
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2023 Arthur Hoskey. All
rights reserved.

Today’s Lecture

 JUnit and Automated Testing

© 2023 Arthur Hoskey. All
rights reserved.

Testing

 It is important to test code so that
you eliminate any errors it may
contain.

 All companies do some degree of
testing on their software before they
release it to customers.

© 2023 Arthur Hoskey. All
rights reserved.

Automated and Manual Tests

 Automated Test – Run a program
that tests if the application is
working properly. No human
interaction.

 Manual Test – A human sits at the
screen and interacts with the
application.

 AUTOMATED TESTS ARE BETTER!!!

© 2023 Arthur Hoskey. All
rights reserved.

Benefits of Automated Tests

 Automated tests are faster than manual tests.

 Automated tests are easily repeatable. You are
guaranteed to do the exact same test each time
you run it.

 Automated tests allow you to easily test the
program on extreme loads (lots of users or
data).

 For example, simulating thousands of users
logging on to a website or loading millions of
pieces of data into a program.

© 2023 Arthur Hoskey. All
rights reserved.

Person Class

 Assume the following class definition:

public class Person {
 private String name;
 private int id;

 public String getName() { return name; }
 public int getId() { return id; }

 public void setName(String name) {
 this.name = name;
 }

 public void setId(int id) {
 this.id = id;
 }
}

© 2023 Arthur Hoskey. All
rights reserved.

Testing Code

Does the following code test if the SetName
method works correctly?

Person p = new Person();

p.setName("Derek");

© 2023 Arthur Hoskey. All
rights reserved.

Bad Testing Code

Does the following code test if the SetName
method works correctly?

NO!

Person p = new Person();

p.setName("Derek");

public void setName(String name) {

 name = this.name; // Incorrect assign

 //this.name = name; // Correct assign

}

© 2023 Arthur Hoskey. All
rights reserved.

Incorrect

assignment in

SetName will

NOT be caught

by this testing

code.

Brute Force Unit Testing Code

 Actually testing that the value returned is what
we expect would be better.

 The example on the next slide shows a brute
force unit test (does not use JUnit).

 Examples later in the slides will use JUnit
instead.

 JUnit has extra features as opposed to the brute
force method that make unit testing easier.

© 2023 Arthur Hoskey. All
rights reserved.

Brute Force Unit Test (not great)

The following testing code will catch the error in
setName from the previous slide…

Person p = new Person();

String testName = "Derek";

p.setName(testName);

if (testName.equals(p.getName())) {

 System.out.println("Person Get/Set Name: Pass");

}

else

{

 System.out.println("Person Get/Set Name: FAIL!");

}

© 2023 Arthur Hoskey. All
rights reserved.

Checks if the value

sent in is set

correctly

Brute Force Test Valid and Invalid
Data (not great)

void setId(int id) {

 if (id >= 0) {

 this.id = id;

 }

}

Person p = new Person();

int validId = 10;

p.setId(validId);

if (validId == p.getId()) {

 System.out.println("Person Get/Set Id, Valid Value: Pass");

} else {

 System.out.println("Person Get/Set Id, Valid Value: FAIL!");

}

int invalidId = -77;

p.setId(invalidId);

if (validId == p.getId()) {

 System.out.println("Person Get/Set Id, Invalid Value: Pass");

} else {

 System.out.println("Person Get/Set Id, Invalid Value: FAIL!");

}

© 2023 Arthur Hoskey. All
rights reserved.

getId should return the original id (10 from previous

SetId call) since the invalid value should not be

allowed to go in

getId should return validId the get/set

worked properly

Test SetId for both valid

and invalid data

JUnit

 Now we will move on to JUnit…

© 2023 Arthur Hoskey. All
rights reserved.

JUnit

 JUnit – Used for unit testing in Java applications.

 We will be discussing JUnit 5.

 For each class you want to test you need to
create a matching test class for it.

© 2023 Arthur Hoskey. All
rights reserved.

Test Class Naming and Setup

Test Class Naming and Setup

 A JUnit convention is to have a matching test class for each class that you want to
test (1 to 1 correspondence between classes and test classes).

 You are not required to do it this way, but it is recommended.

 Each test class should be under test in the same package as the class being tested.

main

 java

 com.mycompany.hr

 Employee.java

 Manager.java

 com.mycompany.sales

 Purchase.java

test

 java

 com.mycompany.hr

 EmployeeTest.java

 ManagerTest.java

 com.mycompany.sales

 PurchaseTest.java

© 2023 Arthur Hoskey. All
rights reserved.

Employee and Manager are under the

package com.mycompany.hr so their

matching test classes should be

under that package in Test Packages

JUnit 5 Dependency

 Create a console application that uses Maven.

 Add the following dependency to the pom.xml file (it should be a child of
<dependencies>):

<dependencies>

 <!-- https://mvnrepository.com/artifact/org.junit.jupiter/junit-jupiter-api -->

 <dependency>

 <groupId>org.junit.jupiter</groupId>

 <artifactId>junit-jupiter-api</artifactId>

 <version>5.10.2</version>

 <scope>test</scope>

 </dependency>

</dependencies>

 Open Maven tab on the right. Choose download sources and then Reload.

© 2023 Arthur Hoskey. All
rights reserved.

Maven tab

Download Sources Reload

Create JUnit Test Class

 Right click a class and choose Generate from the context menu.

 Choose Test from the Generate Menu.

© 2023 Arthur Hoskey. All
rights reserved.

Create JUnit Test Class

 Set the Create Test dialog, choose the methods you want to test and
press OK.

© 2023 Arthur Hoskey. All
rights reserved.

Create JUnit Test Class

 A new class will be created under test. The name of the class will be the
same as the original class except Test is appended.

© 2023 Arthur Hoskey. All
rights reserved.

Create JUnit Test Class

 Here is the PersonTest class that was created:

© 2023 Arthur Hoskey. All
rights reserved.

Test Method

 We will now add testing code to a test class…

© 2023 Arthur Hoskey. All
rights reserved.

Test Method

Test Method

 Use the @Test annotation to create a test method in a test class.

 For example:

@Test

void myTestMethod() {

 // Testing code goes here…

}

 All methods in the test class that are decorated with @Test are
testing methods.

© 2023 Arthur Hoskey. All
rights reserved.

Sample Test Class and Test
Method

 Here is the test class for the Person class defined earlier in the slides:

class PersonTest {

 @Test

 void setName() {

 Person p = new Person();

 String testName = "Derek";

 p.setName(testName);

 assertEquals(testName, p.getName());

 }

 // Other testing code methods go here…

}

© 2023 Arthur Hoskey. All
rights reserved.

Set the name

Make sure the name we

get back is the name we

put in using setName

If the assertEquals fails then

IntelliJ will show that in the

Test Results window

Make testGetSetName a test

method by decorating with @Test

Assertions

Assertions

 Use assertions to check results of running methods in a JUnit test
class.

 Do NOT use if statements!

 assertEquals – Succeeds if its arguments are EQUAL.

assertEquals(10, 10); // Succeeds

assertEquals(10, 20); // Fails

 assertNotEquals – Succeeds if its arguments are NOT EQUAL.

assertNotEquals(10, 10); // Fails

assertNotEquals(10, 20); // Succeeds

 NetBeans will indicate that a test method fails if any of the
assertions in the method fail.

© 2023 Arthur Hoskey. All
rights reserved.

assertEquals and Objects

assertEquals and Objects

 There is an overload of assertEquals that compares Objects.

 This overload will call the equals method to check for equality.

 This means that it will do a value compare as opposed to a
reference compare (assuming the class being compared has an
override of equals that does a value compare).

 It is important to override the equals method on classes you
create if you want to do a value compare.

© 2023 Arthur Hoskey. All
rights reserved.

Running Tests in IntelliJ

Running Tests in IntelliJ

 Run unit tests. Click the double green triangles in the left margin on the class
header line. Choose the Run option from the menu.

 This will execute all the methods decorated with the @Test annotation.

 Running test code does NOT run the main method (the above only runs the
JUnit tests).

 Test results appear in bottom window.

© 2023 Arthur Hoskey. All
rights reserved.

Press

double

green

triangles

Choose

Run

Sample Test Failure

Sample Test Failure

 Any methods that have assert statements that fail will cause
messages to appear in the test output window.

 For example, change Person.setName to the following:

public void setName(String name) {

 //this.name = name;

 name = this.name; // This now causes an error

}

 Run the tests again and you should see the following output:

© 2023 Arthur Hoskey. All
rights reserved.

setName

now

fails!!!

End of Slides
© 2023 Arthur Hoskey. All
rights reserved.

	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Testing
	Slide 4: Automated and Manual Tests
	Slide 5: Benefits of Automated Tests
	Slide 6: Person Class
	Slide 7: Testing Code
	Slide 8: Bad Testing Code
	Slide 9: Brute Force Unit Testing Code
	Slide 10: Brute Force Unit Test (not great)
	Slide 11: Brute Force Test Valid and Invalid Data (not great)
	Slide 12: JUnit
	Slide 13: JUnit
	Slide 14: Test Class Naming and Setup
	Slide 15: JUnit 5 Dependency
	Slide 16: Create JUnit Test Class
	Slide 17: Create JUnit Test Class
	Slide 18: Create JUnit Test Class
	Slide 19: Create JUnit Test Class
	Slide 20: Test Method
	Slide 21: Test Method
	Slide 22: Sample Test Class and Test Method
	Slide 23: Assertions
	Slide 24: assertEquals and Objects
	Slide 25: Running Tests in IntelliJ
	Slide 26: Sample Test Failure
	Slide 27: End of Slides

